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Abstract
We discuss the origin of the maximum in the electrical resistivity ρ(T ) of
quasicrystals (QCs) and show that it can be consistently explained as a magnetic
effect due to the presence of localized magnetic scattering centres within the
quasiperiodic lattice. On the experimental side we present a comparative
electrical resistivity–magnetic susceptibility study of icosahedral AlPdMn and
CdCa QCs and show correlation between the temperature of the ρ(T) maximum
and the electronic paramagnetic magnetization of localized magnetic centres.
We propose a theoretical explanation in terms of the Korringa–Gerritsen (KG)
model, originally developed for noble metals with diluted transition metal
impurities. Unlike the other existing models of electrical conduction in QCs,
the KG model describes the ρ(T ) maximum as a magnetic effect and predicts
its shift to higher temperatures for an increased concentration of magnetic
moments.

1. Introduction

The electrical resistivity ρ(T ) of quasicrystals (QCs), that generally exhibits a negative
temperature coefficient (NTC) on cooling, is one of the most spectacular manifestations of
the effect of quasiperiodicity on the physical properties of quasiperiodic metallic alloys. The
effect is especially nicely demonstrated in decagonal QCs, where a given sample exhibits an
NTC ρ(T ) within the quasiperiodic plane, whereas in the orthogonal periodic direction the
resistivity is smaller by a factor of several tens and shows a positive temperature coefficient
(PTC), as characteristic of regular periodic metals. The mechanism of electrical conduction in
QCs has been a matter of intense experimental and theoretical investigation, and has recently
been reviewed in several papers [1, 2]. Experiments show that in many cases the conductivity
σ = ρ−1 can be expressed by an empirical form

σ(T ) = σ(0) + �σ(T ), (1)
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where the temperature-dependent part obeys a power law

�σ(T ) ∝ T β, (2)

with 1 < β < 1.5, over a wide temperature range (such as from 4 up to 1000 K). The residual
conductivity at low temperature σ(0) depends on the composition of the alloy and its structural
quality, that depends on the annealing history of the sample. It is worth noting that equation (1)
is contradictory to the Matthiessen rule where the T -independent and T -dependent parts of
the resistivity, instead of conductivity, are additive.

The conductivities of the icosahedral i -AlPdMn alloys represent a special class where
the power law �σ(T ) ∝ T β of equation (2) is not obeyed even qualitatively. The i -AlPdMn
resistivities ρ(T ) in many cases display a maximum [3–8] between room temperature and
4 K, and sometimes in addition a minimum [3, 5, 6] at lower temperatures. The i -AlPdMn
family is also special within the Al-based QCs for the strong magnetism of its manganese
atoms. The maximum in ρ(T ) is not well understood as yet. Quantum interference effects
(QIEs) that invoke disorder/quasiperiodicity-induced weak localization (WL) of the extended
electronic states provide one possible theoretical explanation. However, there exist several
experimental studies [3, 5] that indicate a one-to-one correspondence between the temperature
Tm of the ρ(T ) maximum and the concentration of the Mn magnetic moments, suggesting that
the ρ(T ) maximum could be a magnetic effect. It is the purpose of this paper to elaborate
further this hypothesis of a magnetic origin of the ρ(T ) maximum, from both the experimental
and theoretical points of view. From the experimental side we present combined electrical
resistivity and magnetic susceptibility measurements of three magnetic i -AlPdMn samples that
contain considerably different fractions of magnetic Mn atoms. We then make a comparison
with a nominally nonmagnetic binary i -CdCa QC, which, however, also exhibits a maximum
in ρ(T ) and a significant Curie magnetization at low temperatures due to extrinsic magnetic
impurities introduced during sample growth. To explain theoretically the occurrence of the
ρ(T ) maximum we discuss first the currently available models of electrical conductivity in
QCs, namely the variable-range hopping (VRH) conductivity and the QIEs, neither of which
take into account magnetic scattering explicitly. Next we show that the maximum in ρ(T ) can
be consistently explained by the presence of localized magnetic centres in QCs that introduce
quasi-bound localized electronic states. We show that this ρ(T ) behaviour is not specific to
QCs, but is quite commonly found in regular metallic alloys of noble metals (Cu, Ag, Au) with
diluted magnetic impurities of transition metals (Mn, Fe) and has been known since the early
1950s [9, 10]. A theoretical description of the ρ(T ) maximum has been given by Korringa
and Gerritsen [10] (in the following referred to as the KG theory) and it is straightforward to
extrapolate their model to QCs, though, at present, on qualitative grounds only. Moreover, the
KG theory is not applicable to magnetic QCs only. It also predicts a monotonically increasing
NTC resistivity ρ ∝ 1/T for nonmagnetic systems where quasi-localized electronic states are
formed in the vicinity of nonmagnetic impurities in the host metallic matrix.

2. Experimental results

Before showing our experimental results we discuss briefly two other observations [3, 5]
that reported a systematic change of the temperature Tm of the ρ(T ) maximum with the
Mn concentration in the i -AlPdMn system. Akiyama et al [3] have shown that the ρ(T )

maximum is formed for Mn concentration between 7 and 10% and Tm is strongly shifted
to higher temperatures with increasing Mn concentration. However, these authors did not
attribute the appearance of the maximum to the magnetism of the Mn atoms, as they adopted
an unphysical assumption that the i -AlPdMn alloys with the Mn concentration lower than 9%
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are no longer magnetic. Magnetic measurements [4] have demonstrated that the i -AlPdMn QCs
exhibit magnetism in the whole icosahedral-phase concentration range (i.e. roughly between 7
and 10% of Mn), but the number of magnetic moments increases strongly with increasing
Mn concentration. Another systematic increase of Tm with increasing Mn concentration in
i -AlPdMn was reported by Rodmar et al [5]. Their Czochralsky-grown ingot exhibited a
linear gradient of the Mn concentration along the growth direction. Sectioning the ingot into
smaller pieces yielded a systematic shift of Tm towards higher temperatures for Mn-richer
pieces. As the number of magnetic Mn atoms was reported to be directly proportional to
the Mn concentration [4], this suggests a magnetic origin of the ρ(T ) maximum. Here it is
important that the systematic variation of Tm was observed on pieces of the same sample with
a controlled variation of the Mn concentration, so that there is no ambiguity on comparing
results of different samples.

Our combined electrical resistivity and magnetic susceptibility measurements were per-
formed on four icosahedral samples, three magnetic i -AlPdMn samples with considerably
different amounts of magnetic Mn moments and one nominally nonmagnetic i -CdCa sample.
The first sample, of nominal composition Al72.4Pd20.5Mn7.1 (in the following referred to as
AlPdMn7.1), was monodomain, grown by the Czochralsky method. It was annealed for one day
at 800 ◦C in vacuum. This sample had been used before in NMR diffusion [11], lineshape [12]
and relaxation studies [13, 14]. The second sample, of composition Al70.5Pd21.2Mn8.3 (referred
to as AlPdMn8.3), was also Czochralsky grown and monodomain. This sample was ‘superan-
nealed’ for 35 days at 800 ◦C in vacuum in order to obtain a structure as perfect as possible. As
we show later, the superannealed sample contains a considerably smaller number of magnetic
Mn atoms, despite its larger nominal Mn concentration. The third sample, of composition
Al72Pd19.5Mn8.5 (referred to as AlPdMn8.5), was polygrain and its annealing history was not
known. As shown later, this sample contains a much larger magnetic Mn fraction than the
other two. In addition, the 27Al NMR spin–lattice relaxation rate of this sample (to be shown
elsewhere) obeys the Korringa relation T1T = const, demonstrating its strong metallic charac-
ter. Both these features—the large magnetic Mn fraction and the strong metallic character—
indicate that the AlPdMn8.5 sample is not of high quality. The fourth sample was polygrain
icosahedral Cd85Ca15 (referred to as CdCa15). This sample was prepared by high-frequency
induction melting, followed by annealing at 400 ◦C for 430 h. All resistivity measurements
were performed by a standard four-terminal method. Magnetic susceptibility measurements
were performed in a Quantum Design SQUID magnetometer equipped with a 5 T magnet.

The resistivities were measured in the interval from room temperature to 4 K and are
displayed in figure 1. All resistivities exhibit qualitatively similar temperature dependences,
first increasing from room temperature upon cooling and then decreasing at low temperatures
after passing a maximum. However, significant quantitative differences exist. The room-
temperature resistivity of the AlPdMn7.1 sample amounts to ρ285 K = 2041 µ� cm. A shallow
maximum is observed around 160 K where ρ160 K = 2047 µ� cm, the total increase from
room temperature to 160 K being almost negligible, (ρ160 K − ρ285 K)/ρ285 K = 0.3%. Below
this temperature ρ(T ) decreases to ρ4 K = 1768 µ� cm, thus by 14% of its maximum value.

The superannealed AlPdMn8.3 sample shows smaller room-temperature resistivity,
ρ300 K = 1729 µ� cm. However, the increase of ρ(T ) on cooling is much stronger.
ρ(T ) reaches a maximum at 60 K where ρ60 K = 2317 µ� cm, the total increase being
(ρ60 K − ρ300 K)/ρ300 K = 34%. The NTC (the slope) of ρ(T ) of the superannealed sample
is thus much larger and the temperature of the maximum is shifted to considerably lower
temperatures. Below the maximum ρ(T ) decreases and reaches ρ4 K = 2130 µ� cm,
exhibiting an 8% drop from its maximum value. The ρ(T ) curve of the AlPdMn8.3 crosses
that of AlPdMn7.1 at 180 K.
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Figure 1. Temperature-dependent electrical resistivities of the four investigated icosahedral
quasicrystalline samples: AlPdMn7.1 (solid circles), AlPdMn8.3 (open circles), AlPdMn8.5 (solid
diamonds) and CdCa15 (open diamonds). The scale on the left applies to the AlPdMn samples
whereas the right-hand scale is for the CdCa.

The resistivity of AlPdMn8.5 is the smallest among the investigated i -AlPdMn samples.
Upon cooling it first increases from 1202 µ� cm at 315 K to 1267 µ� cm at the temperature
of the broad maximum at 120 K, thus by (ρ120 K − ρ315 K)/ρ315 K = 5%. Below the maximum
ρ(T ) decreases to ρ4 K = 1122 µ� cm, thus by 11% of its maximum value.

The room-temperature resistivity of the CdCa15 sample is one order of magnitude
smaller and amounts to ρ310 K = 114.5 µ� cm. Upon cooling ρ(T ) reaches a maximum
at T = 30 K, which is the lowest of all the four investigated samples. The resistivity
at the maximum amounts to ρ30 K = 128.5 µ� cm with the total increase from room
temperature (ρ30 K − ρ310 K)/ρ310 K = 12%. Below the maximum ρ(T) decreases and reaches
ρ4 K = 127 µ� cm, thus exhibiting a 1% drop from its maximum value.

We present next the magnetic susceptibility χ(T ) measurements of the above four samples
in the same temperature range as for ρ(T ). Magnetization M was measured in a field H = 1 T
where the variation of M with H is still linear, so we consider the χ = M/H ratio in the
following. χ contains both a diamagnetic and a paramagnetic contribution, which, in the
high-temperature regime, can be described by

χ = χd +
C

T − θ
. (3)

The diamagnetic contribution was estimated from the room-temperature χ(T ) data. For
AlPdMn7.1 we obtained χd = −1.38 × 10−5 emu/mol of sample, which is close to
the susceptibility χd ≈ −8 × 10−6 emu/mol of sample calculated from the tabulated



Origin of the maximum in the temperature-dependent electrical resistivity of quasicrystals 6979

values of the atomic core diamagnetic susceptibilities. The data were then analysed in
the form (χ − χd)

−1 versus T . The fit with equation (3) in the high-temperature regime
(T > 50 K) yielded the Curie–Weiss temperature θ = −26 K and the Curie–Weiss constant
C = 3.2 × 10−2 emu K mol−1 of Mn, wherefrom we obtain the mean effective moment
p(exp)

ef f = 0.51 µB/(Mn atom). This low p(exp)

ef f value may be interpreted as an indication that
only a fraction f of all Mn atoms carries localized moments. The mean effective moment
per magnetic atom in the regime kB T � pef f H is defined as [15] pef f = p(exp)

ef f /
√

f , so

the true mean effective moment pef f is larger than the experimentally measured value p(exp)

ef f

by a factor 1/
√

f . For the i -AlPdMn system the actual valence of the Mn atoms is not
known, but the pef f values for the three most likely configurations of the Mn ions [16]
are all relatively close to 5 µB , i.e. pef f (Mn2+) = 5.9 µB , pef f (Mn3+) = 5.0 µB and
pef f (Mn4+) = 4.0 µB . Assuming that the nonzero Mn moments have an average value

pef f ≈ 5 µB , we derive a fraction f = (p(exp)

ef f /pef f )
2 = 1.0% of all Mn atoms in the

AlPdMn7.1 sample to carry magnetic moments within the analysed temperature range. Our
analysis thus interprets the high-temperature susceptibility to indicate that only a small fraction
of 1% of all Mn atoms carries localized magnetic moments and that these moments have the
full magnitude expected for manganese. Identical analysis was also performed on the χ(T )

data of the AlPdMn8.3 and AlPdMn8.5 samples. For the superannealed AlPdMn8.3 we obtained
p(exp)

ef f = 0.31 µB/(Mn atom), so that a fraction f = 0.4% of all Mn atoms is magnetic in
that sample. This is smaller by a factor of roughly two as compared with AlPdMn7.1. For
AlPdMn8.5, on the other hand, we obtained p(exp)

ef f = 1.1 µB/(Mn atom), yielding a much
larger Mn magnetic fraction, f = 4.8%. The small fractions of magnetic Mn atoms of the
order of 1% in the investigated AlPdMn7.1 and AlPdMn8.3 samples are consistent with the
f values determined from specific-heat and magnetic susceptibility measurements on other
good-quality i -AlPdMn samples [17, 18], whereas the large magnetic fraction f = 4.8% of
AlPdMn8.5 is untypical for the i -AlPdMn family, hence indicating its poor structural quality.
All paramagnetic susceptibilities are presented in figure 2 in a χ − χd versus T plot. In order
to be comparable to the χ(T ) of the CdCa15 sample (also shown in figure 2), the data are given
in units of emu/g of sample.

The total susceptibility χ(T ) of the CdCa15 sample is displayed as an inset in figure 2.
The susceptibility is diamagnetic (negative) and temperature independent down to 30 K,
whereas below this temperature a Curie-like upturn is observed. Here care was taken that
the contribution of the paramagnetic impurities from the sample holder was subtracted from
the total χ(T ), so that the paramagnetic component indeed originates from the CdCa15

sample. As neither Cd nor Ca is paramagnetic, the moments can only be of extrinsic origin,
introduced into the sample during the growth process. Since we do not know what kind
of paramagnetic impurities are contained within the sample, we are not able to perform a
quantitative analysis similar to that conducted for the i -AlPdMn samples. However, since
the diamagnetic contribution χd is well defined, we are able to extract the paramagnetic
contribution χ − χd , which, when expressed in the emu/g of sample units, may then be
compared with the paramagnetic susceptibilities of the i -AlPdMn samples. This is shown in
figure 2, where χ − χd of all four samples are displayed. The paramagnetic susceptibility of
the CdCa15 sample is very small as compared with the i -AlPdMn samples.

Comparing now the χ(T ) and the ρ(T ) data of each sample, we find the following
interesting correlation between the paramagnetic susceptibility and the temperature of the
ρ(T ) maximum. In the least magnetic sample, CdCa15, the maximum in ρ(T ) is observed at
30 K, which coincides with the temperature below which χ − χd starts to become significant.
In AlPdMn8.3 the ρ(T ) maximum occurs at 60 K, which is again the temperature below which
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Figure 2. Temperature-dependent paramagnetic susceptibilities χ − χd of AlPdMn7.1 (solid
circles), AlPdMn8.3 (open circles), AlPdMn8.5 (triangles) and CdCa15 (diamonds). The inset
shows the total susceptibility (diamagnetic plus paramagnetic) of the CdCa15 sample.

χ − χd becomes significant. For AlPdMn7.1, there is almost no temperature dependence of
ρ(T ) above 100 K, but there is a significant decrease below 100 K, which again coincides with
the temperature, below which χ−χd becomes large. A similar conclusion also can be drawn,at
least qualitatively, for AlPdMn8.5. This analysis indicates that there exists a correlation between
the temperature of the ρ(T ) maximum and the magnitude of the paramagnetic susceptibility,
supporting the hypothesis of a magnetic origin of the resistivity maximum. It also suggests
that the origin of the magnetic moments may not be of crucial importance in this issue. The
moments may be either intrinsic to the quasicrystalline structure (like Mn in i -AlPdMn or Fe in
i -AlCuFe) or extrinsic, provided they are more or less randomly distributed within the sample.

3. Discussion

We discuss now the possible origin of the ρ(T ) maximum from the theoretical point of view
by first considering the currently existing theories of electrical conduction in QCs. Here
two different approaches exist. In the first approach the theory of Anderson localization in
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disordered metals is extrapolated to QCs, where quasiperiodicity introduces localization of the
electronic states, yielding an insulating state at T = 0. At nonzero temperatures thermally
activated electron hopping (or tunnelling) between localized states drives these states back
into conduction, resulting in hopping-type conductivity. The low-temperature conductivity
is considered to obey a ln σ(T ) ∝ T −1/4 dependence (the Mott law) or ln σ(T ) ∝ T −1/2

in the case when Coulomb repulsion is included [19]. The resulting resistivity ρ = σ−1 is
monotonically increasing towards T → 0, exhibiting an NTC, but no maximum. It is also not
consistent with the experimentally observed power law of equation (2).

A more QC-specific model of the dc conductivity was given by Janot [20, 21] in terms
of hierarchically variable-range electron hopping (VRH) between localized states. The VRH
model yields an insulating state at T = 0, whereas at T �= 0 the number of charge carriers in the
conduction band increases as a power law of temperature due to the phonon-assisted excitation
over the quasiperiodicity-induced hierarchical sequence of potential barriers. Except close to
T = 0, the resulting resistivity behaves as ρ ∝ 1/T , thus predicting a monotonic increase
with an NTC on cooling that is consistent with the empirical law of equation (2) (with β = 1).
However, the VRH theory again does not predict a maximum in ρ(T ).

The second approach relies on the QIE. Unlike the hopping conduction that drives localized
states back into conduction, QIEs modify contribution of extended states either by modification
of the electronic diffusivity (the WL effect) or by inducing changes in the density of states
(DOS) at the Fermi level g(EF) (the electron–electron interactions, EEIs). QIEs are important
at low temperatures only as thermal vibrations and any inelastic processes destroy interference.
QIE terms contribute small corrections to the Boltzmann conductivity and it is a usual practice
to write the conductivity in the form of equation (1)

σ(T ) = σ(0) + �σE E I (T ) + �σW L (T ). (4)

The EEI term depends on temperature as [22, 23] �σE E I (T ) ∝ √
T . The WL contribution

includes spin–orbit and inelastic scattering and can be written in the form [22–24]

�σW L (T ) = A(3
√

t + 1 − √
t − 3). (5)

Here A = e2/(2π2h̄
√

Dτso) with D representing the diffusion constant and τso the spin–
orbit scattering time of the electrons, and t = τso/4τi(T ), where τi is the inelastic scattering
time. The last term in equation (5) is usually added to keep �σW L (T ) = 0 at T = 0 [22].
It is considered that the only temperature-dependent quantity in equation (5) is τi , which
obeys a power law τi ∝ T −p, at least within a limited temperature range. The exponent p
depends on the type of inelastic scattering mechanism (electron–phonon, electron–electron
etc) and was predicted [25] to be in the range 1.5 < p < 3. While �σE E I (T ) ∝ √

T
changes with temperature monotonically, �σW L (T ) exhibits a minimum (or equivalently the
resistivity shows a maximum) for τso/τi(T ) = 1/2. Within the above WL model, the maximum
in ρ(T ) occurs as a consequence of the crossover from the dominant inelastic scattering at
high temperature to a dominant spin–orbit scattering at low temperature, where the strong
spin–orbit scattering introduces a kind of re-entrant antilocalization of the electrons at low T .
The WL theory thus predicts the maximum in ρ(T ) and its NTC above the maximum, but
does not consider these effects to be of magnetic origin. In the limit of high temperatures both
QIE corrections vanish, i.e. �σE E I (T ) = �σW L (T ) = 0. It was estimated [22] that the EEI
contribution in the i -AlPdMn probably vanishes in the temperature range 10–50 K, whereas
the WL contribution may survive to somewhat higher temperatures, such as 150–200 K. For
this reason the fitting of the experimental σ(T ) curves away from the low-temperature regime
with the equation (4) can give quite uncertain results.

The above two approaches—the hopping conduction and the QIE—are both based on the
disorder/quasiperiodicity-inducedlocalization of the electronic states and do not take explicitly
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into account the scattering of conduction electrons on magnetic centres. However, the clear
experimental evidence that the temperature Tm of the ρ(T ) maximum in magnetic QCs depends
on the concentration of magnetic atoms prompts a different theoretical approach that would

(i) still take into account the localized nature of electronic states, but
(ii) also consider magnetic scattering in an explicit way.

A simple phenomenological theory that includes both these effects is the KG model [10], which
was developed in the early 1950s to explain the ρ(T ) maximum in regular metallic alloys of
noble metals with diluted magnetic impurities of transition metals (Mn, Fe). The theory is
in fact more general, describing the resistivity of noble metals containing either magnetic or
nonmagnetic transition metal impurities. It is essentially based on the same physical principle
as the hopping-conduction and WL theories—the existence of localized electronic states in the
vicinity of Fermi level. In the following we give a brief account of the KG theory and discuss
its applicability to QCs.

Because of their different valency, diluted transition metal impurities in a host metallic
matrix act as a scattering potential to the conduction electrons. The consequence of scattering
is a build-up (or depletion) of electronic charge around the impurity that screens the excess
nuclear charge. The screening produces a long-range oscillating charge density, known as
Friedel oscillations [26]. The KG theory assumes that the screening electrons occupy virtual
bound states [27], where the electrons are in localized states, but their energies lie within
the conduction band energies. If the impurities are nonmagnetic, the virtual-bound-state
energies are centred at the Fermi energy εF . When the impurities are magnetic due to unpaired
d electrons, the bound-state energies are shifted by the spin energy ±ε1 due to the s–d exchange
interaction. Each of the two split levels is assumed to have a width �, so the bound-state
energies lie within the intervals εF + ε1 ± �/2 and εF − ε1 ± �/2. The scattering mechanism
that determines the resistivity may be considered as a process where the incoming conduction
electron throws the local electron out of its quasi-bound state by means of Coulomb interaction,
and becomes at the same time captured in its place in either the ε +ε1 or ε −ε1 state, according
to its own spin direction. This process may be regarded as a kind of a resonance effect, where
the incoming conduction electron has the same energy as the electron in the localized state.
The collision time τ for such processes is effectively zero, thus contributing significantly to
the resistivity. The occurrence of the maximum in ρ(T ) can be understood from the simple
‘relaxation-time’ formula for the conductivity

σ = −
(

e2k2
F

3π2h̄2

) ∫ +∞

−∞
dε

dk
τ

d f

dε
dε, (6)

where k = |	k| is the wavevector of the conduction electron, kF the Fermi wavevector and f
the Fermi–Dirac distribution function. The function d f /dε is a bell-shaped function centred
at εF with the width proportional to kB T . The temperature dependence of ρ = σ−1 originates
from the assumption that τ varies with energy, τ = τ (ε). In the simplest approximation
one takes τ ≈ 0 for energies of the quasi-bound states and τ ≈ const �= 0 elsewhere. At
high temperatures the function d f /dε is broad enough to extend over the quasi-bound energy
bands centred at εF ± ε1. Upon cooling the width of d f /dε decreases and the weight of the
quasi-bound states becomes increasingly more important in the integral of equation (6), so the
resistivity increases. At still lower temperatures, d f /dε becomes so narrow that it no longer
integrates over the quasi-bound energies and the resistivity starts to drop after it has reached a
maximum. Upon T → 0, ρ tends to approach the value ρ0 of a pure metal without impurities,
where, within the KG theory, ρ0 is given by the Drude form ρ−1

0 = ne2τ/m. The above model
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yields an expression for the resistivity [10]
(

ρ

ρ0

)−1

= 1 −
[

tanh

(
ε1 + �/2

2kB T

)
− tanh

(
ε1 − �/2

2kB T

)]
, (7)

where the origin of the energy scale was shifted to εF = 0. At temperatures kB T � �

equation (7) becomes particularly simple,

ρ

ρ0
= 1 +

2�

kB T

exp(ε1/kB T )

[1 + exp(ε1/kB T )]2
, (8)

predicting a maximum in ρ(T ) at a temperature Tm = 0.65ε1/kB . In the case of nonmagnetic
impurities there is no spin-dependent energy splitting, so the energies of the quasi-bound states
are now centred at εF with the total width 2�. This situation corresponds to placing ε1 = �/2
into equation (7), yielding

(
ρ

ρ0

)−1

= 1 − tanh

(
�

2kB T

)
. (9)

Here the resistivity does not exhibit a maximum, but rather increases monotonically towards
T → 0, a consequence of the fact that the τ ≈ 0 condition is now fulfilled in an energy interval
of width 2� centred at the Fermi level. In the kB T � � limit, ρ(T ) exhibits a simple 1/T
increase upon cooling

ρ

ρ0
= 1 +

�

2kB T
. (10)

The predictions of the KG theory are thus in qualitative agreement with the experimental
ρ(T ) curves of QCs, both magnetic and nonmagnetic. For nonmagnetic samples the theory
predicts a monotonically increasing NTC resistivity ρ ∝ 1/T on cooling, whereas for magnetic
samples ρ(T ) exhibits a maximum. As the temperature of the maximum is proportional to the
exchange energy, Tm ∝ ε1, which for small concentration c of magnetic atoms itself increases
as ε1 ∝ c; this also correctly predicts the increase of Tm for more magnetic samples. This
Tm ∝ c dependence was indeed observed in regular alloys [9, 10] (Cu, Ag, Au)–Mn and
Au–Cr, where, in addition, the NTC of ρ(T ) at temperatures above the maximum was smaller
and the maximum less pronounced for an increasing concentration of Mn(Cr) moments (a
similar situation that is also displayed in our figure 1). However, one has to be aware of the
limitations of the KG theory. First, the assumption τ = τ (ε) with τ ≈ 0 for the quasi-bound
states and τ ≈ const elsewhere is purely phenomenological. Second, the theory assumes that
the scattering by the ‘foreign’ atoms is elastic (so the spin does not change). Next the theory
is derived for low temperatures where the phononic resistivity can be neglected and for low
concentration c of ‘foreign’ atoms (typically c < 1 at.%) such that they can be treated as
independent. The resulting temperature-dependent term appears as a small correction to the
Drude resistivity, ρ(T ) = ρ0 + �ρ(T ), which, however, correctly obeys the Matthiessen rule.

It is interesting to consider to what extent the KG theory can be applied to QCs. Since QCs
quite generally exhibit a weak metallic character down to low temperatures, one can anticipate
that some extended electron states should exist. On the other hand, it is now widely accepted
that in the i -AlPdMn-type structure there also exist quasi-localized states, where a fraction
of electrons are confined to the basic building blocks of the structure, the pseudo-Mackay
icosahedral atomic clusters. It can therefore be anticipated that quasi-bound and extended
states coexist in real QCs, in analogy to noble metals with transition impurities. Diluted
magnetic impurities exist in magnetic QCs too. In i -AlPdMn typically 1% of all Mn atoms
are magnetic. Since the total Mn concentration amounts to about 8%, this makes 0.08% of
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all atoms in the i -AlPdMn structure carry magnetic moments, thus a diluted quantity. In i -
AlCuFe a fraction 10−4 of the total number of Fe atoms are magnetic [6, 28]. These two QC
families thus possess both essential properties that lead to the maximum in ρ(T ) within the KG
theory. In i -AlPdMn the maximum in ρ(T ) is observed at relatively high temperatures close
to 100 K (see [3–6] and the present work), whereas in i -AlCuFe [6–8] the maximum is shifted
to considerably lower temperatures of about 10 K. This is consistent with the smaller number
of magnetic centres in the i -AlCuFe samples. The above considerations suggest that it may
be a straightforward procedure to apply the KG theory to QCs. The neglect of the phononic
contribution to the resistivity can be argued by the fact that phonons generally cannot propagate
within the quasiperiodic lattice (except for the long-wavelength acoustic ones). However, due
to the fundamental difference between the QCs and the regular metallic alloys with transition
metal impurities, one can expect that the KG theory in its original form (equations (7) and (9))
may be applicable to QCs only qualitatively, but may serve as a reasonable starting point
towards a more complete, QC-specific theory of electrical resistivity.

It is worth mentioning that an anomalously decreasing resistivity at low temperatures
upon cooling due to magnetic effects was also predicted by Yosida [29] and Schmitt [30],
who considered magnetic metallic alloys with antiferromagnetically (AFM) coupled moments
(e.g. Cu–Mn). Yosida considers a spin-dependent (exchange) plus a spin-independent
(screened Coulomb potential around the Mn ions) interaction between conduction 4s electrons
and the localized 3d (Mn) electrons in the dilution limit (c < 1 at.% of Mn). Both, elastic and
inelastic scattering processes are taken into account, whereas lattice vibrations are neglected.
The resulting resistivity is temperature independent at high temperatures and starts to decrease
gradually on approaching the Néel temperature TN due to the appearance of short-range
AFM order. Below the AFM transition the resistivity continues to drop monotonically. The
anomalous decrease of ρ(T ) at low temperatures is here a consequence of the s–d exchange
interaction, thus of magnetic origin. The theory can explain the T -independent plateau of the
resistivity at high temperatures and a monotonic decrease in the regime where short-range AFM
correlations set in (that can occur quite high above TN ), but cannot explain the maximum in
ρ(T ). The theoretical ρ(T ) curves are very similar to our experimental curve of the AlPdMn7.1

sample displayed in figure 1. Here the Mn moments in AlPdMn7.1 are also AFM coupled via
indirect exchange, as evidenced from the negative Curie–Weiss temperature θ = −26 K, but
there is no AFM phase transition. Further work is needed to elaborate the applicability of the
Yosida theory to magnetic QCs.

We now apply the KG theory to the experimental ρ(T ) data displayed in figure 1. Since
the QIE model offers an alternative explanation of the ρ(T ) maximum, we compare in the
following theoretical fits of both models on the same graph. For the KG model, the fit was
made with equation (7), that involves three fit parameters—the exchange energy ε1, the width
of the quasi-bound states � and the residual resistivity ρ0. The QIE fit, on the other hand, was
made with the ansatz ρ−1(T ) = σ(0) + �σW L (T ), with �σW L given by equation (5). This fit
involves four fit parameters: σ(0), A, p and the temperature T0. Here T0 is defined by taking the
inelastic scattering time in the form τi = τ 0

i /T p and then writing t = τsoT p/(4τ 0
i ) = (T/T0)

p,
so that T0 = (4τ 0

i /τso)
1/p.

For the AlPdMn7.1 sample (figure 3), the QIE model cannot reproduce the experimental
data even qualitatively. This model yields a relatively large NTC resistivity at temperatures
above the ρ(T ) maximum and is hence not applicable to the resistivities of the type
of AlPdMn7.1 that exhibit a small NTC (or even a T -independent-like plateau) at high
temperatures. As mentioned before, this type of ρ(T ) is quite commonly found within the
i -AlPdMn family. An attempt to make a qualitative fit (solid curve in figure 3) yielded the
parameters σ(0) = 5.2 × 10−4 (µ� cm)−1, A = 1.73 × 10−4 (µ� cm)−1, T0 = 291 K and
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Figure 3. Electrical resistivity of the AlPdMn7.1 sample fitted with the QIE model (solid curve)
and the KG model (dashed curve). The fit functions and the fit parameters are defined in the text.

p = 2.23. The fit fails to reproduce the data at both high and low temperatures, wherefrom we
conclude that the QIE model is not applicable in this case. The KG fit is not much better. A
qualitative fit (dashed curve in figure 3) was obtained with the fit parameters ρ0 = 1750 µ� cm,
ε1 = 180 K and � = 58 K. Neither of the two models thus fits the ρ(T ) data of the AlPdMn7.1

satisfactorily.
The ρ(T ) data of the superannealed AlPdMn8.3 sample exhibit a much larger NTC at

temperatures above the ρ(T ) maximum and the QIE model yields a good fit (solid curve in
figure 4) using fit parameters σ(0) = 4.6 × 10−4 (µ� cm)−1, A = 1.55 × 10−4 (µ� cm)−1,
T0 = 207 K and p = 1.66. The fit reproduces excellently the data from room temperature
down to 80 K, whereas below this temperature the fit is less perfect. Here it is astonishing that
the fit is excellent at high temperatures, where the QIE theory is considered non-applicable,
whereas it is less good at low temperatures, where it should be valid. The KG fit (dashed
curve) with fit parameters ρ0 = 1842 µ� cm, ε1 = 88 K and � = 40 K is qualitative only,
reproducing the general ρ(T ) trend, but not its details. For the AlPdMn8.3 sample the QIE fit
can be considered as good whereas the KG theory is applicable only qualitatively.

A similar situation is encountered for the CdCa15 sample, that again shows a large NTC
of ρ(T ) in the high-temperature regime. Here the QIE fit (solid curve in figure 5) with the
parameters σ(0) = 7.9 × 10−3 (µ� cm)−1, A = 6.26 × 10−4 (µ� cm)−1, T0 = 153 K
and p = 1.50 is almost perfect (except in the close vicinity of the ρ(T ) maximum). The
KG fit, on the other hand, is again qualitative only, reproducing the general ρ(T ) trend, but
fails quantitatively. An indicative fit (dashed curve in figure 5) was made using parameters
ρ0 = 118 µ� cm, ε1 = 43 K and � = 10 K.

The ρ(T ) curve of AlPdMn8.5 is analysed in figure 6. This kind of ρ(T ), exhibiting a small
NTC above the ρ(T ) maximum and a large drop below, is most typical for the i -AlPdMn family
and is encountered in the majority of the i -AlPdMn samples. We show in the following that for
the ρ(T ) curves of this kind the slightly modified KG theory reproduces the data well, whereas
the QIE theory is not applicable. The simple KG fit with equation (7) (dashed curve in figure 6)
was obtained with the fit parameters ρ0 = 1100 µ� cm, ε1 = 155 K and � = 48 K. As before,
the fit is qualitative and reproduces reasonably the general ρ(T ) trend, but not its details. An
improved fit could be made by introducing a distribution of the ε1 parameter that broadens
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Figure 4. Electrical resistivity of the superannealed AlPdMn8.3 sample fitted with the QIE model
(solid curve) and the KG model (dashed curve).

Figure 5. Electrical resistivity of the CdCa15 sample fitted with the QIE model (solid curve) and
the KG model (dashed curve).

the maximum in ρ(T ). Due to the lack of translational periodicity in the QC lattice and the
related large manifold of different atomic environments, such a distribution is straightforward
to introduce. A fit using a simple box distribution of the ε1 parameter centred at ε0

1
= 231 K

with the total width �ε1 = 382 K, and using the values � = 57 K and ρ0 = 1119 µ� cm, is
displayed as a solid curve in figure 6. This modified KG fit is almost perfect. Here, however, it is
important to realize that the fit-determined values of the ε0

1, �ε1 and � parameters are relatively
large, so one could expect to observe magnetic ordering phenomena already at considerably
higher temperatures than actually detected in the i -AlPdMn samples of similar resistivity data
(i.e. below liquid He temperatures). These values of the obtained fit parameters demonstrate
the limited applicability of the KG theory to fit the ρ(T ) data away from the low-temperature
regime. This is, however, exactly the same problem as encountered in the application of the
QIE theory. In addition, the introduction of the distribution of the ε1 parameter is, from the
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Figure 6. Electrical resistivity of AlPdMn8.5. The dashed curve is the simple KG fit with
equation (7), whereas the solid curve (denoted as ‘KG-box’) represents an improved KG fit using
a distribution of the ε1 parameter, (ρ/ρ0)

−1 = ∫
[ρ(ε1)/ρ0]−1g(ε1) dε1, with ρ(ε1) given by

equation (7). The rectangular distribution g(ε1) centred at ε0
1/kB = 231 K with the total width

�ε1/kB = 382 K is displayed as an inset. An indicative QIE fit (dotted curve) is shown for
comparison.

fitting point of view, equivalent to introducing one fit parameter more (�ε1 in this case). The
total number of fit parameters in the KG model then becomes four, which is the same as in
the case of the QIE model. The large number of fit parameters in both cases puts ambiguity
on the reliability of the models. For comparison we show in figure 6 an attempt to fit the data
with the QIE theory. The fit (dotted curve) using parameters σ(0) = 8.4 × 10−4 (µ� cm)−1,
A = 2.8 × 10−4 (µ� cm)−1, T0 = 230 K and p = 3.1 again fails completely at both low and
high temperatures, showing the non-applicability of the QIE model to ρ(T ) data with a small
NTC above the maximum.

4. Conclusions

The above results yield the following conclusions. From the experimental point of view there
exists rather convincing evidence that the maximum in the temperature-dependent resistivity
of QCs is a magnetic effect, related either to the intrinsic magnetism of QC structures or to the
presence of randomly distributed extrinsic magnetic impurities. The temperature of the ρ(T )

maximum is proportional to the concentration of magnetic moments. From the theoretical point
of view the situation is much less clear. The KG theory—based on the existence of virtual-
bound electronic states at the Fermi level that are formed in the vicinity of ‘foreign’ atoms in the
host metallic matrix—correctly predicts the shift of the ρ(T ) maximum to higher temperatures
for an increased magnetic moment concentration, hence describing the appearance of the ρ(T )

maximum as a magnetic effect. It also predicts a simple NTC ρ(T ) ∝ 1/T for nonmagnetic
impurities, which is the same as the result of the Janot VRH theory. From the quantitative point
of view, the KG theory works better for resistivities exhibiting a small NTC above the ρ(T )

maximum. The QIE model—that does not consider the ρ(T ) maximum as a magnetic effect—
acts just the opposite, being more or less perfect for samples with a large NTC resistivity above
the maximum and qualitative only for small NTC resistivities. Both theories, however, suffer
from similar problems. They involve a large number of fit parameters and were developed under
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the assumption of low temperatures, where the phononic contribution to the resistivity can be
neglected. When applied to ρ(T ) data extending up to room temperature, the fit parameter
values consequently become rather unphysical. We believe that—though very simplified and
qualitative at the moment—the KG theory can serve as one more step towards a more complete,
QC-specific model of the electrical resistivity that would explain the observed ρ(T ) maximum
in magnetic QCs as a magnetic phenomenon.
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[1] Rapp Ö 1999 Physical Properties of Quasicrystals ed Z M Stadnik (New York: Springer) p 127
[2] Fujiwara T 1999 Physical Properties of Quasicrystals ed Z M Stadnik (New York: Springer) p 169
[3] Akiyama H, Hashimoto T, Shibuya T, Edagawa K and Takeuchi S 1993 J. Phys. Soc. Japan 62 939
[4] Lanco P, Klein T, Berger C, Cyrot-Lackmann F, Fourcaudot G and Sulpice A 1992 Europhys. Lett. 18 227
[5] Rodmar M, Grushko B, Tamura N, Urban K and Rapp Ö 1999 Phys. Rev. B 60 7208
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